
Metallorganische Gerüstverbindungen sind in den Fokus der Forschung gerückt, da sie auf Grund ihrer porösen Strukturen und ihres modularen Aufbaus eine Vielzahl an potentiellen Anwendungen zum
Beispiel in der Katalyse eröffnen.[1] Eine Verbindung, welche besonders wegen ihrer Stabilität aber auch wegen ihrer Anwendung als heterogener Katalysator beachtliches Interesse hervorgerufen hat, ist
[Cu3(Benzol-1,3,5-tricarboxylat)2], so genanntes Cu3(BTC)2.[2,3] Das Cu3(BTC)2 zeichnet sich dadurch aus, dass Koordinationsstellen innerhalb der Kanäle durch Wasser besetzt sind, welches einfach durch
Erhitzen von der charakteristischen „Paddle-Wheel“-Einheit Cu2(COOR)4 entfernt werden kann. Das Netzwerk kollabiert dabei in der Regel nicht und es werden Koordinationsstellen und damit potentiell
katalytische Zentren generiert. Bisher sind verschiedenste Synthesemethoden für Cu3(BTC)2 berichtet worden, wie die Solvothermal- und die „Klassische“ Synthese;[3-5] weiterhin sind elektrochemische
Verfahren und gezieltes Wachstum an funktionalisierten „Self-Assembled Monolayers“ bekannt.[1,6] Vor kurzem wurde auch über die mikrowellen-gestützte Solvothermalsynthese, die mechanochemische
und die Ultraschall-induzierte Synthese berichtet, die auch seit längerem im Fokus unserer Arbeiten stehen.[7-10] Cu3(BTC)2 stellt eine geeignete Modellverbindung zur Evaluierung dieser Synthesemethoden
für MOF-Katalysatoren dar und wir haben verschiedene dieser Synthesemethoden mit Blick auf Effizienz, Phasenreinheit und Stabilität bzw. Steuerung der inneren Oberflächen und Morphologie
untersucht. Hier berichten wir über diesen Vergleich, sowie über die Dotierung mit Palladium(II) und die Reaktion von Cu3(BTC)2 mit Wasser.
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Schlussfolgerungen
• Solvothermale Synthesen ausgehend von Cu(CH3COO)2 in Wasser/Ethanol oder Cu(NO3)2

[11] in Wasser ergeben dreidimensionales [Cu2(OH)(BTC)(H2O)], wohingegen Cu3(BTC)2 mit Wasser/Ethanol oder DMF aus Cu(NO3)2 erhalten wird.
• Untersuchungen zur Mikrowellen-gestützten Solvothermalsynthese lieferten einige interessante Details: i) Diese Synthesevariante ermöglicht die Steuerung der Produktbildung in Abhängigkeit der Abkühlrate (schnelles Abkühlen: Cu3(BTC)2

gegenüber langsamen Abkühlen: [Cu2(OH)(BTC)(H2O)]); ii) Ausgehend von Cu(NO3)2 und Cu(CH3COO)2 kann Cu3BTC2 erhalten werden; iii) Gegenüber der solvothermalen Synthese wird keine Bildung von Cu2O als Nebenprodukt beobachtet; iv)
Abschließend bleibt festzuhalten, dass die mikrowellen-gestützte Solvothermalsynthese die schnellste und komfortabelste Synthesemethode zur Darstellung von Cu3(BTC)2 ist.

• Die Elektrochemische Synthese von Cu3(BTC)2 liefert die geringsten, die mikrowellen-gestützte Solvothermalsynthese in DMF die größten BET-Oberflächen.
• Die Morphologie hängt entscheidend von der Synthesemethode ab, jedoch sind die BET-Oberflächen der verschiedenen Cu3(BTC)2-Proben untereinander vergleichbar, mit Ausnahme der Produkte, welche über die elektrochemische Synthese

erhalten wurden. Weiterhin wurde gezeigt, dass sich durch eine Verwendung von DMF als Syntheselösungsmittel größere Kristallite von Cu3(BTC)2∙3H2O bilden.
• Die Reaktion von Cu3(BTC)2 mit Wasser liefert [Cu2(OH)(BTC)(H2O)].
• Die durchgeführten Untersuchungen zeigten, dass eine Dotierung des Cu3(BTC)2-Systems mit Palladium möglich ist. Katalytische Untersuchungen stehen noch aus.
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