Merge Technologies for Multifunctional Lightweight Structures






Interacting Research Domain D: Micro- and Nanosystems Integration

The integration of microelectronic components into hybrid structures allows for the functionalisation by sensors, actuators and electronics, and thus, the further improvement of the performance and functional density of hybrid components. Innovative continuous manufacturing technologies for active systems based on micro- and also nanoeffects offer special advantages that enable the integration of functional elements into semi-finished products and preforms. In order to achieve the reliable integration of additional functionality, methods for the design and integration of active transducer elements in lightweight structures will be developed. The final goal is to enable the components to exhibit their intrinsic actuatory and sensory effect. A combination of in-situ and inline processes, including injection moulding with functionalised textile layers for electrical contacting and mass print technology will be used. Due to an increased use of FRP components for the reduction of energy consumption in mobile applications, the condition monitoring of these lightweight structures is of increasing importance. One highly innovative approach is that of in-situ functionalisation during production by using inmould-coating techniques and integration of nanocrystal-based sensor films. The integration of transducers and electronics into load-adapted FRP components requires novel interconnection, attachment and housing technologies. The major research objectives are the performance and reliability of signal transfer from hybrid structures to sensors and actuators, as well as the energy supply and response data linkage regarding cost-efficient production processes.
Figure: In-situ Plastics Processes, Smart Systems Integration - Making preforms smarter by integration of new functionalities into hybrid structures Figure: In-situ Plastics Processes, Smart Systems Integration - Making preforms smarter by integration of new functionalities into hybrid structures
Figure: In-situ Plastics Processes, Smart Systems Integration - Making preforms smarter by integration of new functionalities into hybrid structures

Investigators:
Baumann, Götze, Lang, Michel, Zahn
Subprojects of the IRD D
IRD D1 Design methods and technologies for the integration of electronic functional elements into heterogeneous composites
IRD D2 Technologies for embedding foil-based sensors and generators
IRD D3 Technology for the integration of metamaterials for power transfer and communication
IRD D4 Technologies for the integration of miniaturised silicon sensor systems for failure detection in hybrid components
Leader
IRD D / IRD D3
Prof. Dr. Dr. Prof. h. c. mult. Thomas Geßner
Prof. Dr. Dr. Prof. h. c. mult.
Thomas Geßner
IRD D1
Prof. Dr.-Ing. habil. Lothar Kroll
Prof. Dr.-Ing. habil.
Lothar Kroll
IRD D2
Prof. Dr.-Ing. habil. Prof. h. c. Thomas Otto
Prof. Dr.-Ing. habil.
Prof. h. c. Thomas Otto
IRD D4
Prof. Dr.-Ing. habil. Jan Mehner
Prof. Dr.-Ing. habil.
Jan Mehner

Research Partners
partner_institute Institut für Strukturleichtbau Institut für Werkzeugmaschinen und Produktionsprozesse Institut für Werkstoffwissenschaft und Werkstofftechnik Zentrum für Mikrotechnologien Institut für Betriebswissenschaften und Fabriksysteme Institut für Chemie Fakultät für Mathematik Institut für Fördertechnik und Kunststoffe Professur Festkörpermechanik Fakultät für Informatik Professur BWL III Unternehmensrechnung und Controlling Semiconductor Physics Fraunhofer IWU Fraunhofer ENAS Cetex Institut für Textil-und Verarbeitungsmaschinen gemeinnützige GmbH Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden Sächsisches Textilforschungsinstitut e.V. KVB Institut für Konstruktion und Verbundbauweisen gemeinnützige GmbH Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden Institut für Werkzeugmaschinen und Steuerungstechnik Institut für Holz- und Papiertechnik