Merge Technologies for Multifunctional Lightweight Structures






Interacting Research Domain C: Textile-/Plastics-based Technologies

The anisotropic properties of textile-reinforced plastic composites allow the force-flow-compatible exploitation of the extraordinary lightweight potential with high-density performance and functionality, but require new technologies, as well as complex simulation and design methods. In order to fully exploit the high specific strengths and stiffnesses in lightweight structures, the integration of metallic load introduction systems is generally indispensable. The varying fibre orientation of textile-reinforced components and the specific restrictions imposed by the complex manufacturing process complicate the force-flow-compatible design of embedded metal components with regard to maximum structure strength. The same applies to short- and long-fibre-reinforced thermoplastic components with metal inserts using the injection moulding process. With the development of integrative injection moulding processes in association with in-mould coating, a vital contribution is made to the reduction of resource and energy consumption, especially for the areas of fibre-reinforced plastics (FRP) and metal/plastic composites. Even when lightweight construction technologies for composite fibre structures made from natural fibres and biodegradable polymers are available, environmental conditions must be taken into account. To validate the developed research methods, representative fundamental components and demonstrators will be utilised, with a progressive increase in complexity expected throughout the course of the project. The preferred designs will be fabricated in the integrative lightweight manufacturing complex (ILCx), integrated into the primary system demonstrator, the Chemnitz Car Concept (CCC), and tested under typical vehicle loads and environmental conditions.
Figure: In-situ processes, use of new injection moulding for combination of hybrid components with additional smart applications
Figure: In-situ processes, use of new injection moulding for combination of hybrid components with additional smart applications

Investigators:
Bullinger-Hoffmann, Geßner, Hardt, Helbig, Müller, W. Nendel, Odenwald, von Unwerth, Wagenführ

Subprojects of the IRD C
IRD C1 Merge technologies with textile/metal components and functional surfaces using integrative in-mould plastics processes for the CCC system demonstrator
IRD C2 Process merger of metal die casting/plastics injection moulding technologies for components of lightweight conveyor systems
IRD C3 In-situ microinjection moulding process for assembling active modules
IRD C4 Flexible textile/plastics processes with renewable raw materials
IRD C5 Merge technologies for physiologically compatible textile/plastic components using anisotropic effects
Leader
IRD C / IRD C1 / IRD C5
Prof. Dr.-Ing. habil. Lothar Kroll
Prof. Dr.-Ing. habil.
Lothar Kroll
IRD C2
Prof. Dr.-Ing. Klaus Nendel
Prof. Dr.-Ing.
Klaus Nendel
IRD C3
Adj. Prof. Dr.-Ing. Welf-Guntram Drossel
Adj. Prof. Dr.-Ing.
Welf-Guntram Drossel
IRD C4
Prof. Dr. rer. nat. habil. Stefan Spange
Prof. Dr. rer. nat. habil.
Stefan Spange

Research Partners
partner_institute Institut für Strukturleichtbau Institut für Werkzeugmaschinen und Produktionsprozesse Institut für Werkstoffwissenschaft und Werkstofftechnik Zentrum für Mikrotechnologien Institut für Betriebswissenschaften und Fabriksysteme Institut für Chemie Fakultät für Mathematik Institut für Fördertechnik und Kunststoffe Professur Festkörpermechanik Fakultät für Informatik Professur BWL III Unternehmensrechnung und Controlling Semiconductor Physics Fraunhofer IWU Fraunhofer ENAS Cetex Institut für Textil-und Verarbeitungsmaschinen gemeinnützige GmbH Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden Sächsisches Textilforschungsinstitut e.V. KVB Institut für Konstruktion und Verbundbauweisen gemeinnützige GmbH Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden Institut für Werkzeugmaschinen und Steuerungstechnik Institut für Holz- und Papiertechnik