Übung 4: Effektivverzinsung bei gebrochenen Laufzeiten, Zinsstrukturkurve - Lösung

1. a) ICMA-Methode:

A Laufzeit ganzzahlig,
$$P = \frac{1}{q^n} \left(R + \frac{p}{m} \cdot \frac{q^n - 1}{q - 1} \right)$$
, konkret: $110 = \frac{1}{q^9} \left(102 + 8 \cdot \frac{q^9 - 1}{q - 1} \right)$

q	rechte Seite
1,0665	110,048
1,06656	110,00592
1,06657	109,99884
1,0666	109,977

$$i_e = 6,66\%$$

B Laufzeit ganzzahlig, neue Periode = Halbjahr,
$$110 = \frac{1}{q^{18}} \left(102 + 4 \cdot \frac{q^{18} - 1}{q - 1} \right)$$

q	rechte Seite
1,0333	110,072
1,03335	110,000
1,0334	109,929

$$i_e = 1,0335^2 - 1 = 6,78\%$$

C Laufzeit gebrochen,
$$P + S = \frac{1}{q^f \cdot q^n} \left(R + \frac{p}{m} \cdot \frac{q^{n+1} - 1}{q - 1} \right)$$
, $f = \frac{178}{360} = 0,49444$,

$$S = 5,75 \cdot \frac{182}{360} = 2,91$$
, konkret: $85,20+2,91 = 88,11 = \frac{1}{q^{9,49444}} \left(100+5,75 \cdot \frac{q^{10}-1}{q-1}\right)$

q	rechte Seite
1,0802	88,116
1,0803	88,095
1,0804	88,037

$$[i_e = 8,02\%]$$
 (evtl. $i_e = 8,03\%$)

D Laufzeit gebrochen, neue Periode = Halbjahr

$$f = \frac{178}{180} = 0,98889, S = 5,75 \cdot \frac{2}{180} = 0,03$$

Ansatz:
$$85,23 = \frac{1}{q^{18,98889}} \left(100 + 2,875 \cdot \frac{q^{19} - 1}{q - 1} \right)$$

q	rechte Seite
1,04	85,2614
1,0401	85,1428

$$i_e = 1,04^2 - 1 = 8,16\%$$

b) SIA-Methode:

A siehe oben: 6,66 % **B** vgl. oben: $i_e = 0.03335 \cdot 2 = 6.67\%$

C siehe oben: 8,02 %, **D** vgl. oben: $0,04 \cdot 2 = 8,00\%$

c) US Treasury:

A siehe oben: 6,66 %, **B** siehe oben: 6,67 %

$$\boxed{\mathbf{C}} \quad P + S = \frac{1}{1 + f \cdot i} \cdot \frac{1}{q^n} \left(R + \frac{p}{m} \frac{q^{n+1} - 1}{q - 1} \right)$$

konkret: $88,11 = \frac{1}{1+0.49444i} \cdot \frac{1}{q^9} \left(100+5,75 \cdot \frac{q^{10}-1}{q-1}\right)$

q	rechte Seite	
1,0801	88,146	
1,08016	88,111	
1,0802	88,088	

$$i_e = 8,016\%$$

D Ansatz:
$$85,23 = \frac{1}{1+0.98889i} \cdot \frac{1}{q^{18}} \left(100+2,875 \cdot \frac{q^{19}-1}{q-1}\right)$$

q	rechte Seite
1,0400	85,26
1,0401	85,142

$$[i_e = 0.04 \cdot 2 = 8.00\%]$$

d) Moosmüller-Methode:

 A siehe oben: 6,66 %,
 B siehe oben: 6,78%

 C siehe oben: 8,02 %,
 D vgl. oben: $i_e = 1,04^2 - 1 = 8,16\%$

2. a) (1):
$$\frac{6}{1,1} + \frac{6}{1,11^2} + \frac{106}{1,12^3} = 85,773$$
, (2): $\frac{12}{1,1} + \frac{12}{1,11^2} + \frac{112}{1,12^3} = 100,368$

b) Der aus der Beziehung $\frac{6}{q} + \frac{6}{q^2} + \frac{106}{q^3} = 85,773$ ermittelte Effektivzinssatz lautet $i_e = q - 1 = 1,1192 - 1 = 11,92\%$; im Falle der zweiten Anleihe ergibt sich hingegen $i_e = 11,85\%$.

c) Obwohl beide Anleihen mittels Spot Rates exakt bewertet (und bei dem berechneten Kurs somit gleichwertig) sind, täuscht das Effektivzinskriterium einen Wertunterschied von 0,07 % vor.

3. a) Die spot rates ergeben sich aus:

$$97.09 = 100 \left(1 + \frac{1}{2}i_{0.5}\right)^{-1.0}, i_{0.5} = 5,99; 94.22 = 100 \left(1 + \frac{1}{2}i_{1.0}\right)^{-2.0}, i_{1.0} = 6.04;$$

$$91.39 = 100 \left(1 + \frac{1}{2}i_{1.5}\right)^{-3.0}, i_{1.5} = 6.09; 88.60 = 100 \left(1 + \frac{1}{2}i_{2.0}\right)^{-4.0}, i_{2.0} = 6.14.$$

Halbjährliche Diskontfaktoren aus Preisen ablesbar:

$$d_{0.5} = 0.9709, d_{1.0} = 0.9422, d_{1.5} = 0.9139, d_{2.0} = 0.8860.$$

b) Bewertung über Diskontfaktoren:

$$4.25 \cdot 0.9709 + 4.25 \cdot 0.9422 + 4.25 \cdot 9139 + 104.25 \cdot 0.8860 = 104.38$$

c) Aus der Gleichung

$$104.3802500 = 4.25 (1 + 1/2i)^{-1} + 4.25 (1 + 1/2i)^{-2} + 4.25 (1 + 1/2i)^{-3} + 104.25 (1 + 1/2i)^{-4}$$

erhält man mittels numerischem Verfahren $i_{eff} = 0.06139$. bei normaler Zinsstruktur werden Kupons nicht mit i_{eff} sondern mit den niedrigeren spot rates abgezinst, bei inverser ist es umgekehrt.

d) $100.00 = p \cdot (0.9709 + 0.9422 + 0.9139 + 0.8860) + 100.00 \cdot 0.8860$ gibt p = 3.07329. Der par yield ist wegen halbjährlicher Zahlung $2 \cdot p = 6.14059$

4. Man dupliziere Bond D durch $0.03 \cdot A + 1.03 \cdot B$ und hat pro 100 Nennwert $0.03 \cdot 96.00 +$ 1.03 ⋅ 91.00 = 96.61 zu zahlen. Das ergibt gegenüber dem Preis für D von 98.00 einen risikolosen Gewinn von 1.39.

2

5. Wir finden die halbjährlichen Diskontfaktoren aus folgendem Prozeß:

 $100.38 = 104.00d_{0.5}, \ 103.78 = 5d_{0.5} + 105d_{1.0}, \ 97.10 = 2.0(d_{0.5} + d_{1.0} + d_{1.5}) + 102.00d_{1.5}.$ Daraus ergeben sich $d_{0.5} = 0.9709615385, d_{1.0} = 0.9421446887, d_{1.5} = 0.9144488975$ Die halbjährlichen spot rates erhält man aus $(1 + \frac{1}{2}i)^{-n} = d_n$ zu $s_{0.5} = 5.981, s_{1.0} = 6.049, s_{1.5} = 6.052.$

6. Forward Rates: $r_{fn} = \frac{(1+r_{sn})^n}{(1-r_{s,n-1})^{n-1}} - 1$

Per Definition: $r_{f1} = r_{s1} = 10\%$

Forward Rate in einem Jahr (für ein Jahr): $r_{f2} = \frac{(1+r_{s2})^2}{(1+r_{s1})^1} - 1 = \frac{1,11^2}{1,1} - 1 = 12,01\%$

Forward Rate in zwei Jahren (für ein Jahr): $r_{f3} = \frac{(1+r_{s3})^3}{(1+r_{s2})^2} - 1 = \frac{1,12^3}{1,11^2} - 1 = 14,03\%$