NFFT Logo 3.1.1 API Reference

reconstruct_data_inh_nnfft.c

00001 /*
00002  * Copyright (c) 2002, 2009 Jens Keiner, Stefan Kunis, Daniel Potts
00003  *
00004  * This program is free software; you can redistribute it and/or modify it under
00005  * the terms of the GNU General Public License as published by the Free Software
00006  * Foundation; either version 2 of the License, or (at your option) any later
00007  * version.
00008  *
00009  * This program is distributed in the hope that it will be useful, but WITHOUT
00010  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00011  * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
00012  * details.
00013  *
00014  * You should have received a copy of the GNU General Public License along with
00015  * this program; if not, write to the Free Software Foundation, Inc., 51
00016  * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  */
00018 
00019 /* $Id: reconstruct_data_inh_nnfft.c 3198 2009-05-27 14:16:50Z keiner $ */
00020 
00021 #include <stdlib.h>
00022 #include <math.h>
00023 #include <limits.h>
00024 #include <complex.h>
00025 
00026 #include "nfft3util.h"
00027 #include "nfft3.h"
00028 
00038 void reconstruct(char* filename,int N,int M,int iteration, int weight)
00039 {
00040   int j,k,l;                    /* some variables  */
00041   nnfft_plan my_plan;            /* plan for the two dimensional nfft  */
00042   solver_plan_complex my_iplan;          /* plan for the two dimensional infft */
00043   FILE* fin;                    /* input file                         */
00044   FILE* finh;
00045   FILE* ftime;
00046   FILE* fout_real;              /* output file                        */
00047   FILE* fout_imag;              /* output file                        */
00048   int my_N[3],my_n[3];          /* to init the nfft */
00049   double t,epsilon=0.0000003;     /* epsilon is a the break criterium for
00050                                    the iteration */
00051   unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; /* flags for the infft*/
00052   double time,min_time,max_time,min_inh,max_inh;
00053   double real,imag;
00054   double *w;
00055 
00056   double Ts;
00057   double W;
00058   int N3;
00059   int m=2;
00060   double sigma = 1.25;
00061 
00062   w = (double*)nfft_malloc(N*N*sizeof(double));
00063 
00064   ftime=fopen("readout_time.dat","r");
00065   finh=fopen("inh.dat","r");
00066 
00067   min_time=INT_MAX; max_time=INT_MIN;
00068   for(j=0;j<M;j++)
00069   {
00070     fscanf(ftime,"%le ",&time);
00071     if(time<min_time)
00072       min_time = time;
00073     if(time>max_time)
00074       max_time = time;
00075   }
00076 
00077   fclose(ftime);
00078 
00079   Ts=(min_time+max_time)/2.0;
00080 
00081   min_inh=INT_MAX; max_inh=INT_MIN;
00082   for(j=0;j<N*N;j++)
00083   {
00084     fscanf(finh,"%le ",&w[j]);
00085     if(w[j]<min_inh)
00086       min_inh = w[j];
00087     if(w[j]>max_inh)
00088       max_inh = w[j];
00089   }
00090   fclose(finh);
00091 
00092   N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0)*4);
00093 
00094 
00095   W=NFFT_MAX(fabs(min_inh),fabs(max_inh))*2.0;
00096 
00097   fprintf(stderr,"3:  %i %e %e %e %e %e %e\n",N3,W,min_inh,max_inh,min_time,max_time,Ts);
00098 
00099   /* initialise my_plan */
00100   my_N[0]=N;my_n[0]=ceil(N*sigma);
00101   my_N[1]=N; my_n[1]=ceil(N*sigma);
00102   my_N[2]=N3; my_n[2]=ceil(N3*sigma);
00103   nnfft_init_guru(&my_plan, 3, N*N, M, my_N,my_n,m,
00104         PRE_PSI| PRE_PHI_HUT| MALLOC_X| MALLOC_V| MALLOC_F_HAT| MALLOC_F );
00105 
00106   /* precompute lin psi if set */
00107   if(my_plan.nnfft_flags & PRE_LIN_PSI)
00108     nnfft_precompute_lin_psi(&my_plan);
00109 
00110   /* set the flags for the infft*/
00111   if (weight)
00112     infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
00113 
00114   /* initialise my_iplan, advanced */
00115   solver_init_advanced_complex(&my_iplan,(mv_plan_complex*)(&my_plan), infft_flags );
00116 
00117   /* get the weights */
00118   if(my_iplan.flags & PRECOMPUTE_WEIGHT)
00119   {
00120     fin=fopen("weights.dat","r");
00121     for(j=0;j<my_plan.M_total;j++)
00122     {
00123         fscanf(fin,"%le ",&my_iplan.w[j]);
00124     }
00125     fclose(fin);
00126   }
00127 
00128   /* get the damping factors */
00129   if(my_iplan.flags & PRECOMPUTE_DAMP)
00130   {
00131     for(j=0;j<N;j++){
00132       for(k=0;k<N;k++) {
00133         int j2= j-N/2;
00134         int k2= k-N/2;
00135         double r=sqrt(j2*j2+k2*k2);
00136         if(r>(double) N/2)
00137           my_iplan.w_hat[j*N+k]=0.0;
00138         else
00139           my_iplan.w_hat[j*N+k]=1.0;
00140       }
00141     }
00142   }
00143 
00144   /* open the input file */
00145   fin=fopen(filename,"r");
00146   ftime=fopen("readout_time.dat","r");
00147 
00148   for(j=0;j<my_plan.M_total;j++)
00149   {
00150     fscanf(fin,"%le %le %le %le ",&my_plan.x[3*j+0],&my_plan.x[3*j+1],&real,&imag);
00151     my_iplan.y[j]=real+ _Complex_I*imag;
00152     fscanf(ftime,"%le ",&my_plan.x[3*j+2]);
00153 
00154     my_plan.x[3*j+2] = (my_plan.x[3*j+2]-Ts)*W/N3;
00155   }
00156 
00157   for(j=0;j<N;j++)
00158     {
00159     for(l=0;l<N;l++)
00160       {
00161         my_plan.v[3*(N*j+l)+0]=(((double) j) -(((double) N)/2.0))/((double) N);
00162         my_plan.v[3*(N*j+l)+1]=(((double) l) -(((double) N)/2.0))/((double) N);
00163         my_plan.v[3*(N*j+l)+2] = w[N*j+l]/W ;
00164       }
00165     }
00166 
00167   /* precompute psi */
00168   if(my_plan.nnfft_flags & PRE_PSI) {
00169     nnfft_precompute_psi(&my_plan);
00170     if(my_plan.nnfft_flags & PRE_FULL_PSI)
00171       nnfft_precompute_full_psi(&my_plan);
00172   }
00173 
00174   if(my_plan.nnfft_flags & PRE_PHI_HUT)
00175     nnfft_precompute_phi_hut(&my_plan);
00176 
00177   /* init some guess */
00178   for(k=0;k<my_plan.N_total;k++)
00179   {
00180     my_iplan.f_hat_iter[k]=0.0;
00181   }
00182 
00183   t=nfft_second();
00184 
00185   /* inverse trafo */
00186   solver_before_loop_complex(&my_iplan);
00187   for(l=0;l<iteration;l++)
00188   {
00189     /* break if dot_r_iter is smaller than epsilon*/
00190     if(my_iplan.dot_r_iter<epsilon)
00191     break;
00192     fprintf(stderr,"%e,  %i of %i\n",sqrt(my_iplan.dot_r_iter),
00193     l+1,iteration);
00194     solver_loop_one_step_complex(&my_iplan);
00195   }
00196 
00197   t=nfft_second()-t;
00198 #ifdef HAVE_TOTAL_USED_MEMORY
00199 fprintf(stderr,"time: %e seconds mem: %i \n",t,nfft_total_used_memory());
00200 #else
00201 fprintf(stderr,"time: %e seconds mem: mallinfo not available\n",t);
00202 #endif
00203 
00204   fout_real=fopen("output_real.dat","w");
00205   fout_imag=fopen("output_imag.dat","w");
00206 
00207   for(k=0;k<my_plan.N_total;k++) {
00208 
00209     my_iplan.f_hat_iter[k]*=cexp(2.0*_Complex_I*PI*Ts*w[k]);
00210 
00211     fprintf(fout_real,"%le ", creal(my_iplan.f_hat_iter[k]));
00212     fprintf(fout_imag,"%le ", cimag(my_iplan.f_hat_iter[k]));
00213   }
00214 
00215 
00216   fclose(fout_real);
00217   fclose(fout_imag);
00218 
00219 
00220   /* finalize the infft */
00221   solver_finalize_complex(&my_iplan);
00222 
00223   /* finalize the nfft */
00224   nnfft_finalize(&my_plan);
00225 
00226   nfft_free(w);
00227 }
00228 
00229 int main(int argc, char **argv)
00230 {
00231   if (argc <= 5) {
00232     printf("usage: ./reconstruct_data_inh_nnfft FILENAME N M ITER WEIGHTS\n");
00233     return 1;
00234   }
00235 
00236   reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
00237 
00238   return 1;
00239 }
00240 /* \} */

Generated on 17 Aug 2009 by Doxygen 1.5.3